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The production of N-acylethanolamine (NAE) is enhanced during inflammation. NAE
is synthesized from phosphatidylethanolamine with N-acylphosphatidylethanola-
mine (NAPE) as a precursor. The amount of NAPE at the site of inflammation exceeds
that of NAE. This evokes the possibility that NAPE possesses a biological function, as
does NAE. We here examined if N-palmitoylphosphatidylethanolamine (NPPE), a
precursor of N-palmitoylethanolamine, modulates the state of inflammation. We
found that the level of the phagocytosis of latex beads, Staphylococcus aureus,
Escherichia coli, or apoptotic cells by mouse peritoneal macrophages or J774A.1
macrophages was reduced in the presence of liposomes containing NPPE, while that
of dextran remained unaffected. This action of NPPE seemed to be due to the
inhibition of the activation of Rac1 and Cdc42 in macrophages. These results
suggested that NAPE is bioactive lipid acting toward the termination of
inflammation.

Key words: N-acylphosphatidylethanolamine, lipid mediator, macrophage, phagocy-
tosis, Rho GTPase.

Abbreviations: NAE, N-acylethanolamine; NAPE, N-acylphosphatidylethanolamine; NPE, N-palmitoyletha-
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nolamine; PS, phosphatidylserine.

INTORODUCTION

N-acylethanolamines (NAEs) are bioactive lipids synthe-
sized from membrane phospholipids and possess various
physiologic roles (1–3); N-arachidonoylethanolamine, also
called anandamide, regulates neurotransmission in the
brain (4, 5); N-oleolylehtanolamine works as an anorexic
substance (6); and N-palmitoylethanolamine (NPE) has
an anti-inflammatory effect (2, 7, 8). In animal tissues,
the production of NAE is enhanced upon the initiation of
inflammation. Phosphatidylethanolamine (PE) first
receives N-acylation, such as palmitoylation or arachido-
noylation, giving rise to N-acylphosphatidylethanola-
mines (NAPEs). NAPEs are then hydrolysed to NAEs
by the action of a phosphodiesterase known as NAPE-
PLD (9–15). Anandamide, the best-characterized NAE,
was originally found as an endogenous ligand for the
cannabinoid receptors CB1 and CB2 (16–18) and after-
wards it was shown that the vanilloid receptor TPRV1
also recognizes it (19). Other NAEs seem to serve as
ligands for G protein-coupled receptors as well (20, 21).
In fact, GPR55 and GPR119 were recently found as novel
cannabinoid receptors (22).

Macrophages sit on the front line of self-defense against
pathogenic microorganisms (23). They phagocytose

microbes, pathogen-infected cells, or apoptotic inflamma-
tory cells, as part of the cellular innate immune response.
This action of macrophages contributes to the removal of
pathogens and at the same time phagocytosing macro-
phages produce various factors to regulate inflammation.
It was recently reported that 2-arachidonoylglycerol,
another endocannabinoid, stimulates the phagocytosis of
zymosan by macrophages through the activation of dectin-
1 (24) or integrin (25). The stimulation by 2-arachidonoyl-
glycerol is mediated by CB2 and requires the activation of
phosphatidylinositol 3-phosphate kinase (24, 25).
Anandamide also exerts inhibitory actions on macrophage
phagocytosis in vivo (26), but the precise mechanisms of its
action remain unclear. The fact that the concentration of
NAPE is higher than that of its end product NPE at the site
of inflammation (16) suggests roles for NAPE as an
inflammation modulator (21, 27, 28). We here examined
the effect of NPPE, a precursor of NAE having anti-
inflammatory (2, 8, 29) and immunosuppressive activities
(30), on the phagocytic action of macrophages.

MATERIALS AND METHODS

Materials—1,2-Dioleoyl-sn-glycerophosphoethanola-
mine and palmitic acid were purchased from Sigma-
Aldrich (St Louis, MO). NPPE was synthesized with 1,2-
dioleoyl-sn-glycerophosphoethanolamine and palmitic
acid according to the method of Schmid et al. (31) and
purified by thin-layer chromatography using a mixture of
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chloroform, methanol, and 28% (v/v) ammonium hydrox-
ide (40 : 10 : 1 in volume) as a solvent. The concentration
of NPPE was determined by an assay for lipid phos-
phorus (32). 1,2-Dioleoyl-phosphatidic acid and N-palmi-
toylethanolamine were purchased from Sigma-Aldrich
and Cayman Chemical (Ann Arbor, MI), respectively.
Antibodies against Rac1 and Cdc42 were purchased from
Upstate Biotechnology, Inc. (Lake Placid, NY) and Santa
Cruz Biotechnology (Santa Cruz, CA), respectively. Texas
Red-labelled dextran (molecular weight: 70,000, lysine-
fixable) and Alexa546-labelled phalloidin were obtained
from Molecular Probes (Eugene, OR). Cytochalasin B was
obtained from Sigma-Aldrich. Latex beads were pur-
chased from PolySciences (Warrington, PA). SR144528, a
CB2 antagonist, was a gift from Sanofi-Synthelabo
Recherche (Montpellier, France). Phosphatidylcholine
(PC) (from chicken egg), phosphatidylserine (PS) (from
porcine brain) and PE (from bovine liver) were purchased
from Avanti Polar Lipids (Alabaster, AL). Liposomes
were prepared using a combination of PC and PE (PE
liposomes), PC and NPPE (NPPE liposomes), or PC and
PS (PS liposomes) at a molar ratio of 7 : 3, as described
previously (33).

Cell Culture—Macrophages from the peritoneal cavity
of thioglycolate-injected mice were prepared as described
previously (34–36) and cultured in RPMI1640 medium
supplemented with 10% (v/v) heat-inactivated fetal
bovine serum at 378C with 5% (v/v) CO2 in air.
J774A.1 cells, a mouse macrophage cell line, were
cultured in DMEM supplemented with 10% heat-
inactivated fetal bovine serum at 378C with 5% CO2 in
air. Thymocytes were prepared from ddY mice (female,
6–10 weeks old) and cultured in RPMI1640 medium
supplemented with 10% heat-inactivated fetal bovine
serum in the presence of dexamethasone (10–5 M) for the
induction of apoptosis, as described previously (37).

Assays for Phagocytosis, Endocytosis and Cell
Adhesion—Phagocytosis reactions with peritoneal macro-
phages were carried out as described previously (34–36).
Staphylococcus aureus (strain Smith) or Escherichia coli
(strain W3110) at the logarithmic phase was labelled
with fluorescein isothiocyanate (Molecular Probes) and
used as the targets (37). The engulfment of latex beads or
bacteria was examined by phase-contrast and fluores-
cence microscopy (�1,000 magnification) as described
before (37). For the phagocytosis of apoptotic thymocytes,
the sample after the reaction was fixed, stained with
hematoxylin and examined under a light-field microscope
(�400 magnification) (37). To examine the adhesion of
apoptotic cells to macrophages, the cell mixtures were
incubated on ice, fixed, stained with hematoxylin and
examined by light-field microscopy. For the examination
of the endocytosis of fluorescence-labelled dextran,
macrophages were incubated with dextran (0.2 mg/ml),
rinsed with phosphate-buffered saline and fixed and the
level of fluorescence in macrophages was determined by
fluorescence microscopy as described previously (37).
J774A.1 macrophages were transfected with the plasmid
vector pCMV containing cDNA coding for the dominant
negative form of Rac1 (Rac1N17) or pME18S containing
cDNA coding for the dominant negative Cdc42
(Cdc42N17) (38) together with the green fluorescent

protein-expressing pCS2-venus (a gift from T. Miyawaki,
RIKEN Brain Science Institute, Wako, Japan) using Fu
GENE HD transfection reagent (Roche Diagnostics,
Indianapolis, IN). Those cells were incubated with latex
beads (macrophages : targets = 1 : 11) and the number of
latex beads engulfed by 100 or more green fluorescent
protein-positive cells was determined by fluorescence-
phase contrast microscopy. For the analysis of actin
filaments, macrophages treated with phosphate-buffered
saline containing 2% (w/v) paraformaldehyde, 0.7% (w/v)
glutaraldehyde and 0.01% (v/v) Triton X-100 were
incubated with fluorescence-labelled phalloidin and
examined by fluorescence microscopy (39).

Determination of the Level of GTP-bound Rac1 and
Cdc42—Macrophages after phagocytosis reactions were
lysed with 50 mM Tris–HCl (pH 7.2) buffer containing
0.5 M NaCl, 10 mM MgCl2, 1% Triton X-100, 0.5% (w/v)
sodium deoxycholate, 0.1% (w/v) SDS, 5 mg/ml each of
leupeptin and aprotinin, and 0.1 mM phenylmethylsulfo-
nyl fluoride, and the lysates were centrifuged at
18,000� g at 48C. The supernatants were incubated
with glutathione-Sepharose 4B (Amersham-Pharmacia
Biotech, Uppsala, Sweden) that had been conjugated
with GST-p21 activated kinase at 48C for 45 min. The
Sepharose was washed with 50 mM Tris–HCl (pH 7.2)
containing 150 mM NaCl, 10 mM MgCl2, 1% Triton
X-100, 5mg/ml each of leupeptin and aprotinin, and 0.1
mM phenylmethylsulfonyl fluoride, and incubated with
SDS–PAGE buffer (40). Proteins released from the beads
were subjected to a western blot analysis using mono-
clonal antibodies against either Rac1 or Cdc42, according
to a standard protocol (39).

Statistical Analysis—Data are representative of at
least three independent experiments that yielded similar
results. Data from quantitative analyses are expressed as
the mean�SD (n > 3). Statistical analyses were per-
formed using Student’s t-test and P values of less than
0.05 were considered significant. The data significantly
different from controls were marked with asterisks.

RESULTS

Inhibition of Macrophage Phagocytosis by NPPE-
containing Liposomes—To examine the effect of NPPE
on macrophage phagocytosis, we conducted phagocytosis
reactions in the presence of liposomes consisting of NPPE
and PC. Macrophages prepared from peritoneal fluids
of thioglycolate-injected mice were subjected to an assay
of phagocytosis with various targets, including latex
beads, S. aureus, E. coli and apoptotic thymocytes. Both
the ratio of macrophages that had incorporated latex
beads and the number of latex beads engulfed by a given
number of macrophages were reduced in the presence of
NPPE-containing liposomes, while liposomes consisting
of PE and PC did not affect the phagocytosis (Fig. 1A).
NPPE in liposomes might be metabolized during incu-
bation with macrophages, and the resulting metabolites
could influence the phagocytosis. We thus tested the
effect of 1,2-dioleoyl-phosphatidic acid and N-palmitoy-
lethanolamine, major metabolites of NPPE after the
cleavage by phospholipase D, on macrophage phagocy-
tosis. However, neither substance seemed to influence
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the phagocytosis (Fig. 1B), suggesting that NPPE not its
metabolites is responsible for the inhibitory effect of
NPPE-containing liposomes. The inhibition of phagocy-
tosis by NPPE-liposomes was observed regardless of the
presence of serum in the reactions, suggesting that
serum components were not required for the action of
NPPE-liposomes (Fig. 1C). The level of the phagocytosis

of S. aureus, E. coli and apoptotic thymocytes was also
decreased by the addition of NPPE-containing liposomes
(Fig. 1D). Peritoneal macrophages phagocytose apoptotic
thymocytes in a manner mediated by phosphatidylserine
as a marker for phagocytosis (37). The level of this
phagocytosis was reduced in the presence of phosphati-
dylserine-containing liposomes, as reported previously

Fig. 1. Inhibitory effect of NPPE on phagocytosis by mouse
peritoneal macrophages. (A) Dose response of NPPE-
containing liposomes. Macrophages and latex beads were incu-
bated for 1 h in the presence of increasing amounts of PC-based
liposomes containing NPPE or PE, indicated as the concentration
of total lipids, and the level of phagocytosis was determined
and shown as the ratio of macrophages that have accomplished
phagocytosis or the number of latex beads engulfed by 100
macrophages. (B) Effect of NPPE metabolites on phagocytosis.
Phagocytosis reactions were conducted as in A in the presence
of the indicated amounts of 1,2-dioleoyl-phosphatidic acid (PA)
and N-palmitoylethanolamine (NPE), or solvent alone (methanol
for PA and dimethylsulfoxide for NPE). (C) Time course of
the phagocytosis of latex beads. Phagocytosis reactions were

done with the indicated liposomes (0.75 mM) in the presence
or absence of the serum [10% (v/v)]. (E) Effect of NPPE-
containing liposomes on the phagocytosis of various targets.
The indicated cells were used as targets in phagocytosis reactions
for 1 h in the presence and absence of the indicated
liposomes (0.75 mM). PS, phosphatidylserine-containing lipo-
somes. (E) Effect of liposomes on the binding of apoptotic
thymocytes to peritoneal macrophages. An assay for binding
was carried out in the presence of the indicated liposomes
(0.75 mM) and the number of thymocytes adhering to 100
macrophages is shown. All data are representative of two (A),
two (B), one (C), two (D) and three (E) independent experiments
that yielded similar results.
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(37) and the effect of NPPE-containing liposomes was
smaller than that of liposomes containing phosphatidyl-
serine (Fig. 1D). In contrast, the binding of apoptotic
thymocytes to macrophages, which occurs prior to the
engulfment, remained unaffected by NPPE-liposomes
(Fig. 1E). The inhibitory effect of NPPE-liposomes was
similarly observed when J774A.1 cells, a mouse macro-
phage cell line, were used as phagocytes (Fig. 2). To
examine the possible involvement of known endocanna-
binoid receptors, phagocytosis reactions were conducted
in the presence of an antagonist for CB2, which is highly
expressed in macrophages (41). The inhibitory effect of
NPPE-liposomes was unchanged in the presence of this
antagonist, SR144528 (Fig. 3). These results indicated
that NPPE-liposomes inhibit macrophage phagocytosis in
a manner unrelated to the type of target and not
mediated by CB2.

No Effect of NPPE on Endocytosis of Dextran by
Macrophages—The phagocytosis reactions examined
above were associated with the extension of pseudopods,
filopodia and lamellipodia, as a result of the rearrange-
ment of actin filaments in macrophages (42). We thus
tested the effect of NPPE-liposomes on the endocytosis of
dextran by macrophages, which event occurs without
pseudopod extension (39). In the presence of NPPE-
containing liposomes, the incorporation of fluorescent
dextran into macrophages was not reduced, but rather
slightly increased (Fig. 4). We next examined the effect of
NPPE on the formation of actin filaments. When
macrophages were stained with fluorescein-labelled
phalloidin that selectively binds to F-actin, the pattern
of the actin cytoskeleton was almost the same
in macrophages treated and not treated with NPPE-
liposomes (Fig. 5). On the other hand, cytochalasin B, an
inhibitor of actin polymerization, retarded the formation
of actin filaments in macrophages (Fig. 5). These results
collectively suggested that NPPE-containing liposomes
inhibit the pseudopod-mediated phagocytosis by
macrophages.

Inhibition of the Activation of Rac1 and Cdc42 by
NPPE—The rearrangement of actin cytoskeletons, which
precedes the formation of pseudopods, is regulated by
Rho family small G proteins including Rac1 and Cdc42

(42–46). We thus tested the possibility that NPPE-
liposomes inhibit the actions of these two small G
proteins in macrophages. The involvement of Rac1 and
Cdc42 in the phagocytosis of latex beads was first
examined. The level of the active, i.e. GTP-bound, form
of either Rac1 or Cdc42 transiently increased in
peritoneal and J774A.1 macrophages with a peak at

Fig. 4. Effect of NPPE-containing liposomes on the
endocytosis of dextran. Mouse peritoneal macrophages were
incubated with fluorescence-labelled dextran in the presence
and absence of liposomes containing NPPE or PE (0.75 mM) and
examined by fluorescence microscopy. (Left) Phase contrast and
fluorescence views of the same microscopic fields are shown.
Scale bar = 10 mm. (Right) The level of fluorescence in macro-
phages was determined and expressed relative (in percentage
terms) to that in the reaction with no added liposomes. Data are
representative of three independent experiments that yielded
similar results.

Fig. 3. Effect of a cannabinoid receptor antagonist on the
action of NPPE-containing liposomes. The level of the
phagocytosis of latex beads by mouse peritoneal macrophages
was determined in the presence and absence of NPPE liposomes
(0.75 mM) and the CB2 antagonist SR144528 (5 mM). As a
negative control for SR144528, its solvent was present in the
reactions (denoted with ‘–’). Data are representative of three
independent experiments that yielded similar results.

Fig. 2. Inhibitory effect of NPPE-containing liposomes on
phagocytosis by J774A.1 macrophages. The level of the
phagocytosis of latex beads by macrophages was determined in
the presence and absence of the indicated liposomes (0.75 mM).
Data are representative of three independent experiments that
yielded similar results.
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about 5 min of incubation with latex beads while total
amount remained unchanged (Fig. 6). To know if Rac1
and Cdc42 are needed for the phagocytosis, J774A.1
macrophages after transfection with cDNA coding for the
dominant negative form of Rac1 (Rac1N17) or Cdc42
(Cdc42N17) were used in phagocytosis reactions. We
found that the level of the phagocytosis of latex beads
was significantly lowered by the introduction of either
DNA (Fig. 7), indicating that macrophages require the
actions of both Rac1 and Cdc42 to phagocytose latex
beads. We then examined the effect of NPPE on the
activation of Rac1 and Cdc42 in macrophages during
phagocytosis. The presence of NPPE-containing lipo-
somes abolished an increase in the level of GTP-bound
Rac1 and Cdc42 in either peritoneal or J774A.1 macro-
phages, whereas control PE-liposomes had no effect
(Fig. 8). These results showed that NPPE-liposomes
inhibit the activation of Rac1 and Cdc42, and suggested
that this effect is a mechanism underlying the inhibi-
tion of pseudopod-mediated phagocytosis by the
liposomes.

DISCUSSION

We found in this study that NPPE is involved in the
regulation of inflammation by inhibiting the phagocytic
activity of macrophages. This inhibition of phagocytosis
seemingly owes to the action of NPPE to prevent the
activation of the small G proteins Rac1 and Cdc42 in
macrophages during phagocytosis. As a consequence, the
level of the pseudopod-mediated phagocytosis by macro-
phages is reduced in the presence of NPPE-containing
liposomes. NPE, an end product of NPPE, has been
known to have an anti-inflammatory effect (2, 7, 8). Its
production is stimulated upon the induction of inflam-
mation (16), but NPE is rapidly hydrolysed giving rise to
fatty acid and ethanolamine by the N-acylethanolamine-
hydrolysing acid amidase and fatty acid amide hydrolase
expressed in macrophages (47). As a result, the concen-
tration of NPE at sites of inflammation is lower than
that of its precursor NPPE. Our findings thus suggest
that NPPE plays important roles in the regulation of
inflammation as well as does NPE. The inhibitory effect
of NPPE on macrophage phagocytosis most likely
contributes to the termination of inflammation to protect
tissues from being damaged by excess immune reactions.

The generation of NPPE starts with PE at the
cytoplasmic side of the plasma membrane bilayer where
both PE and the enzyme responsible, N-acyltransferase,
are abundant (9–15). Presumably, NPE is liberated from
the membrane and released into the extracellular space
while more acylated NPPE remains as a component of
the plasma membrane. There are two possible modes for
the action of NPPE: one is that NPPE-containing
membrane vesicles are released from cells and act on
other cells, and the other is that NPPE functions only
within the cells where it is synthesized. In order for
NPPE to act outside, it needs to be first translocated
from the inner to the outer leaflet of the plasma
membrane, and then released from cells as membrane
vesicles. In fact, the presence of NAPE in the outer
leaflet of the plasma membrane has been suggested (48).
It is widely appreciated that such vesicles called
exosomes are produced and delivered from cells upon

Fig. 5. Effect of NPPE-containing liposomes on the
organization of actin filaments in macrophages.
Mouse peritoneal macrophages were incubated with NPPE
liposomes (0.75 mM), PE liposomes (0.75 mM), or cytochalasin
B (50 mM) and actin filaments were visualized using
fluorescence-labelled phalloidin. Phase contrast and fluorescence
views of the same microscopic fields are shown. Scale
bar = 10 mm.

Fig. 6. Transient increase of GTP-bound Rac1 and Cdc42
in phagocytosing macrophages. Mouse peritoneal macro-
phages (A) and J774A.1 macrophages (B) were incubated with
latex beads for the indicated periods, and their whole-cell
lysates were subjected to an assay for GTP-bound Rac1 and
Cdc42. The data for total (both GTP-bound and GDP-bound
forms) proteins are also shown. Data are representative of
three or more independent experiments that yielded similar
results.

Fig. 7. Requirement for Rac1 and Cdc42 in phagocytosis.
J774A.1 macrophages that had been transfected with DNA
coding for the dominant-negative Rac1 (Rac1N17) or dominant-
negative Cdc42 (Cdc42N17) were subjected to an assay for the
phagocytosis of latex beads. Data are representative of three
independent experiments that yielded similar results.
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activation (49, 50). The exosomes produced in septic
tissue contain milk fat globule epidermal growth factor
VIII, a ligand for macrophage phagocytosis receptors,
and alter the level of macrophage phagocytosis, leading
to the attenuation of pro-inflammatory responses (51).
The release of NPPE-containing exosomes could occur
when macrophages are stimulated by microbial patho-
gens or inflammatory cytokines. In the second mode of
action, NPPE acts intracellular as a signal mediator like
phosphoinositides and therefore does not need to move to
the cell surface. It is unclear whether or not NPPE
requires a specific receptor to exert its function. We here
showed that the cannabinoid receptor CB2 is not
required for NPPE-liposomes to inhibit macrophage
phagocytosis. The vanilloid receptor TRPV1 that also
recognizes endocannabinoid seems to be not involved in

the action of NPPE because the TRPV1 agonist resini-
feratoxin did not alter the phagocytosis of latex beads by
macrophages (data not shown). This suggests that the
identification of a novel receptor(s), if it exists at all, is
necessary. It is also possible that NPPE regulates
macrophage phagocytosis without the aid of any recep-
tors. As to how NPPE-containing liposomes repress the
activation of Rac1 and Cdc42 remains to be elucidated.
The conversion of small G proteins from the inactive to
active GTP-bound form is mediated by guanine nucleo-
tide-exchanging factors (52–54). NPPE-liposomes might
somehow retard the actions of such factors specific to
Rac1 and Cdc42. Many other lipid metabolites are
produced in inflammatory cells and might act to regulate
inflammation. In fact, 2-arachidonoylglycerol, known
as an endocannabinoid, is synthesized from

Fig. 8. Inhibition of the formation of green fluorescent
protein-bound Rac1 and Cdc42 in phagocytosing macro-
phages by NPPE liposomes. Mouse peritoneal macrophages
(A) and J774A.1 macrophages (B) were incubated with latex
beads for 5 min in the presence and absence of the indicated
liposomes (0.75 mM) and whole-cell lysates were analysed for the

level of GTP-bound Rac1 and Cdc42. The intensity of the signals
was determined and expressed relative (in percentage term) to
that in the reaction with no added liposomes and beads. Data are
representative of three independent experiments that yielded
similar results.
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phosphatidylinositol and stimulates macrophage phago-
cytosis in a manner mediated by CB2 (24, 25). This
means that a variety of lipid metabolites, which function
to either stimulate or inhibit inflammation, exist at the
site of inflammation. It is necessary for a better under-
standing of how inflammation is evoked and terminated,
not only to clarify the actions of each lipid metabolite but
also to determine the level of the metabolites at sites of
inflammation.
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